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Abstract

A 2-D analysis is made for the dynamic interactions between viscous flow and one or more circular cylinders.

The cylinder is free to respond to the fluid excitation and its motions are part of the solution. The numerical procedure

is based on the finite volume discretization of the Navier–Stokes equations on adaptive tri-tree grids which

are unstructured and nonorthogonal. Both a fully implicit scheme and a semi-implicit scheme in the time domain

have been used for the momentum equations, while the pressure correction method based on the SIMPLE technique is

adopted to satisfy the continuity equation. A new upwind method is developed for the triangular and unstructured

mesh, which requires information only from two neighbouring cells but is of order of accuracy higher than linear. A new

procedure is also introduced to deal with the nonorthogonal term. The pressure on the body surface required in

solving the momentum equation is obtained through the Poisson equation in the local cell. Results including flow

field, pressure distribution and force are provided for fixed single and multiple cylinders and for an unrestrained

cylinder in steady incoming flow with Reynolds numbers at 200 and 500 and in unsteady flow with Keulegan–Carpenter

numbers at 5 and 10.
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1. Introduction

There are many engineering applications where fluid flow and body motion are fully coupled. One of these examples

is a marine structure in water waves. The body is set into motion by the incoming waves or current and as a result more

waves will be generated by the motion. The interaction is usually fully nonlinear and completely coupled. In other

words, the body motion will depend on the wave and the wave structure in turn will depend on the motion. Such mutual

dependence has been a big obstacle in analysis of nonlinear water wave and floating body interaction. To overcome this

difficulty, Wu and Eatcok (1996, 2003) developed a procedure by introducing some auxiliary functions. Potential flow

theory was used, as the effect of viscosity is not significant in the cases they considered. The use of auxiliary functions
e front matter r 2006 Elsevier Ltd. All rights reserved.
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allowed Wu and Eatock Taylor to obtain the body acceleration before the pressure distribution is known. Their method

has been used in several other applications (Wu and Eatock, 2003; Wu et al., 2004; Wu and Hu, 2004) and has been

found to be very effective.

For the viscous flow, the situation is more complex. In the present work, we consider a 2-D unrestrained

cylinder in incoming flow, which means that the body is allowed to respond to hydrodynamic loading. The

solution is based on the finite volume method together with an unstructured mesh generated through a

tri-tree method (Hu et al., 2002). Several novel schemes are developed. Firstly, a new upwind method is intr-

oduced for the physical values on the cell face, which requires information only from the two cells sharing the

face but with the order of accuracy higher than linear. Secondly, the nonorthogonal terms along the face are

calculated from the derivatives at the centres of the two cells sharing the face. Thirdly, the pressure on the face attached

to the body surface is obtained through the Poisson equation in the local cell. All these have significantly

improved the scheme used previously (Hu et al., 2002), which allows a more realistic and complex simulation to be

undertaken.

To tackle the nonlinear coupling between the body motion and the fluid loading, the coordinate system is fixed on the

body. As a result, the body acceleration enters the governing equation. It is treated as part of the source term when

solving the momentum equation, while the pressure correction equation based on the SIMPLE procedure remains the

same. At each time step, the acceleration is assumed together with the velocity field and pressure distribution, taken

from the solution at the previous time step for instance. During the iteration, the force on the body is calculated and the

acceleration is updated. The iteration continues until the velocity field, pressure distribution and the body acceleration

have all converged.

There is a large volume of work on flow interaction with cylinders. Much of it is, however, either for a fixed cylinder

in steady or unsteady incoming flow, or for a cylinder undergoing forced oscillation in otherwise calm fluid. For a fixed

cylinder in steady flow, Roshko (1954) and Wille (1960) provided experimental data at Re ¼ 200. Numerical

simulations this case were undertaken by Lecointe and Piquet (1984), Franke et al. (1990), Chen et al. (1999) and Chan

and Anastasiou (1999), together with cases at other Reynolds numbers. For a cylinder in forced motion or a fixed

cylinder in an oscillatory flow, experimental studies and numerical simulations were undertaken by Hassan (1962),

Bishop and Hassan (1964), Maull and Milliner (1978), Honji (1981), Bearman et al. (1985), Williamson (1985),

Sarpkaya (1986), Obasaju et al. (1988), Tatauno and Bearman (1990), Kühtz (1996), Dütsch et al. (1998), Bothwick

(1986), Stansby and Smith (1991), Wang and Dalton (1991), Lin et al. (1996), Zhang and Zhang (1997) and Baranyi

(2003), Baranyi and Shirakashi (1999).

Here we shall first use our developed method to solve some of the problems in these publications for validation.

The method is then used for other cases at different Reynolds and Keulegan–Carpenter numbers. Numerical

results are provided for the velocity field through streamlines, pressure distributions, force histories and induced body

motions.
2. Finite volume formulation for the Navier–Stokes equations

A Cartesian coordinate system O� xy is defined. All the physical parameters are nondimensionalized by the density

of the fluid r, a typical length of the body D and a typical velocity component U0. Let f represent either the velocity

component u in the x direction or v in the y direction. The nondimensionalized Navier–Stokes equations for f can be

written as

qf
qt
þ rðUfÞ ¼

1

Re
r2f�

qp

qxm

, (1)

where U ¼ (u, v) is the velocity vector, p is the pressure, m ¼ 1 corresponds to f ¼ u and m ¼ 2 corresponds to f ¼ v,

and ðx1; x2Þ ¼ ðx; yÞ. The Reynolds number is Re ¼ U0D=n and n is the kinematic viscosity of the fluid. To solve the

problem, the fluid domain is divided into many small triangular cells. Integrating Eq. (1) over a cell Vi bounded by

three surfaces Afj ; j ¼ 1; 2; 3 (see Fig. 1), we have

qf
qt

Vi þ
X3
j¼1

ðJ � AÞfj ¼ Sf, (2)

where the flux vector J contains both the convection term and the diffusion term, and is defined as

J ¼ Uf�
1

Re
rf. (3)
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Fig. 1. A triangular element i with its three neighbours i1, i2, i3.
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In Eq. (2), Afj ¼ nfjAfj is the vector in the outward normal direction of face fj (see Fig. 2) and its magnitude is equal to

the length of the face, and

Sf ¼ �

Z
Vi

qp

qxm

dV ¼ �
X3
j¼1

ðpAnxm
Þfj (4)

is a source term to the equation, where nxfj and nyfj are the components of the normal of Afj in the x and y directions,

respectively. The convection term in Eq. (2) can be written as
P3

j¼1UfjAfjffj , where

Ufj ¼ ufj � nxfj þ vfj � nyfj . (5)

As the finite volume method defines the values at the centre of each cell, the face value ffj of is obtained through

interpolation, or

ffj ¼ ljfi þ ð1� ljÞfij , (6)

where fi corresponds to cell i and fij corresponds to cell ij (see Fig. 2). li in Eq. (6) is the weighting function for linear

interpolation, and it is defined as

lj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxij � xfjÞ

2
þ ðyij � yfjÞ

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxij � xiÞ

2
þ ðyij � yiÞ

2
q , (7)

where ðxfj ; yfjÞ are the coordinates of the intersection between face fj and the line linking points i and ij.

The second part of J in Eq. (3) represents diffusion. Across a given face fj, this becomes

�
1

Re
ðA � rfÞfj ¼ �

1

Re
Afj

qf
qx

nx þ
qf
qy

ny

� �� �
fj

. (8)



ARTICLE IN PRESS

a

b

c

d

i

ij
fj

Ajend

f j
A

n
f j

jst

jend

Fig. 3. Control volume for face fj.

G.X. Wu, Z.Z. Hu / Journal of Fluids and Structures 22 (2006) 371–390374
To obtain the derivative on the face, we integrate Eq. (8) over a control volume bounded by the surface a-b-c-d

(see Fig. 3), in which bc and da are parallel to the face, and ab and cd are parallel to the line linking i and ij. We have

�
1

Re
fA � rfgfj ¼ �

Afj

ReVfj

Afjðfij � fiÞ þ Ajend

h
ðnxfjnxjend þ nyfjnyjend Þðfjend � fjstÞ

i
, (9)

where ðnxjend ; nyjend Þ and Ajend are the normal vector and area of cd, respectively.

Substituting Eqs. (6) and (9) into Eq. (2), we obtain

apfi ¼ af 1fi1 þ af 2fi2 þ af 3fi3 þ Sc, (10)

where

afj ¼ �ð1� ljÞmfj þ Kfj , (11)

ap ¼ bf 1 þ bf 2 þ bf 3 þ Vi=Dt, (12)

bfj ¼ ljmfj þ Kfj , (13)

Kfj ¼
A2

fj

ReVfj

; mfj ¼ UfjAfj , (14)

Sc ¼ Sf þ
1

Re

X3
j¼1

Afj

Vfj

Ajend ðnxfjnxjend þ nyfjnyjend Þðfjend � fjstÞ þ fð0Þi V i=Dt, (15)

and fð0Þi is the solution from the previous time step.

Eq. (10) is obtained based on a procedure similar to the central differencing technique used for the convection term.

This provides good spatial accuracy but is prone to instability in the time domain. The stability of the solution

scheme depends on the cell Reynolds number or the Peclet number which is the ratio of the product of the local

velocity and the distance between cell centres divided by the kinematic viscosity. For the mesh used here, the Peclet

number is given as Pe ¼ mfj=Kfj . When Pe is larger than a critical value, say Pe0, the upwind technique should be

used. In the one-dimensional problem it can be shown that Pe0 ¼ 2 for a grid with equal spacing. This number is used in

this work.

In the previous applications (Hu et al., 2002), the upwind scheme is applied based on the QUICK scheme extended

from that used for the structured mesh (Versteeg and Malalasekera, 1995). It may seem to be more accurate than the

first-order method. But the QUICK scheme requires three points for interpolation. The third node will be on the face of

the cell, which can be obtained only though another interpolation. Thus the originally intended accuracy may not be

fully realized. Here a different upwind technique is developed. When Pe4Pe0, instead of using Eq. (6), we write

ffj ¼

fi þ
qf
qx

� �
i
ðxfj � xiÞ þ

qf
qy

� �
i
ðyfj � yiÞ; Ufj40;

fij þ
qf
qx

� �
ij
ðxfj � xijÞ þ ð

@f
@y
Þijðyfj � yijÞ; Ufjo0:

8><
>: (16)
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Eq. (10) will retain its form, but Eqs. (11) and (13) become

afj ¼
Kfj ; Ufj40;

�mfj þ Kfj ; Ufjo0;

(
bfj ¼

mfj þ Kfj ; Ufj40;

Kfj ; Ufjo0:

(
(17)

In the case of Ufj40, a term �½ðqf=qxÞiðxfj � xiÞ þ ðqf=qyÞiðyfj � yiÞ�U
fj should be added to the source term, while in

the case of Ufjo0, �½ðqf=qxÞijðxfj � xijÞ þ ðqf=qyÞijðyfj � yijÞ�U
fj should be added. These contributions to the source

term are due to the second and third terms on the right-hand side of Eq. (16).

If face fj of the cell is on the boundary, afj and bfj have to be modified, depending on the nature of the boundary

condition. For the Dirichlet condition f ¼ F, we use ðA � rfÞfj ¼ AfjðF� fiÞ=l, where l is the distance from the centre

of the cell to face fj. This leads to

bfj ¼ Afj=ðRe lÞ; afj ¼ 0.

The term corresponding to fj in the summation of Eq. (15) should be deleted because the control volume a-b-c-d

adopted in Eq. (9) is no longer required on this surface. However, an additional term ½�mfj þ Afj=ðRe lÞ�F should be

added to the source term due to the boundary condition. For the Neumman condition we have qf=qn ¼ 0,

bfj ¼ mfj ; afj ¼ 0, and the term corresponding to fj in the summation of Eq. (15) should be deleted for the same reason

as that in the Dirichlet condition.

The summation term in Eq. (15) is a result of the adoption of the nonorthogonal mesh. In the previous work (Hu et

al., 2002), each nodal value in the term is obtained through the interpolation based on the distances of the node to the

centres of those cells connected to this node. Here, we use

fjend � fjst ¼ ð�fxny þ fynxÞfjAfj ¼ f�½ljfix þ ð1� ljÞfijx�nyfj � ½ljfiy þ ð1� ljÞfijy�nxfjgAfj .

This requires information only from the two cells connected to the face fj and therefore is much easier to implement.
3. Pressure correction through the SIMPLE technique

Eq. (10) can be solved once the pressure is known. The difficulty is that pressure is part of the solution and is yet

to be found. This is achieved through the use of the continuity equation. There are many possible ways of applying

the continuity equation and the so-called SIMPLE algorithm of Patankar and Spalding (1972) is one of the

most commonly used. It starts by assuming an initial pressure distribution pþ with a velocity field fþ. Eq. (10) can then

be written as

apf
�
i ¼

X3
j¼1

afjf
þ
ij �

qpþ

qxm

� �
i

V i þ S, (18)

where S contains the second- and third-order terms of Eq. (15). The new velocity field f� may not satisfy the required

continuity equation. Thus a pressure correction p0 is introduced, or

p ¼ pþ þ p0. (19)

Putting this into Eq. (18), we have

apfi ¼
X3
j¼1

afjf
þ
ij �

qðpþ þ p0Þ

qxm

� �
i

V i þ S. (20)

Subtraction of Eq. (18) from Eq. (20) then gives

ui ¼ u�i �
Vi

ap

qp0

qx

� �
i

, (21)

vi ¼ v�i �
Vi

ap

qp0

qy

� �
i

. (22)

We require the new velocity field ui and vi to satisfy the continuity equation

qu

qx
þ

qv

qy
¼ 0, (23)
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which can be written as

X3
j¼1

mfj ¼
X3
j¼1

UfjAfj ¼ 0 (24)

after the integration over the cell is performed.

Substituting Eqs. (21) and (22) into Eq. (24) and using the control volume a-b-c-d to work out the derivatives of p0,

we have

aip
0
i ¼ apf 1p0i1 þ apf 2p0i2 þ apf 3p0i3 þ Sp, (25)

where

apfj ¼
A2

fjW fj

Vfj

, (26)

ai ¼ apf 1 þ apf 2 þ apf 3, (27)

W fj ¼ lj
V i

ap

þ ð1� ljÞ
Vij

ðapÞij
, (28)

Sp ¼ �
X3
j¼1

AfjU
�fj þ

X3
j¼1

AfjW fj

Vfj

Ajend ðnxfjnxiend þ nyfjnyjend Þðp
0
jend � p0jstÞ. (29)

It should be noted that W fj is from the term Vi=ap in Eqs. (21) and (22) required on the cell face and therefore it is

obtained through interpolation using the values of Vi=ap of cell i and Vij=ðapÞij of cell ij.

When the velocity on face fj is given, U�fj in Eq. (29) should be replaced by the known value while the term apfj in

Eq. (25) together with the term corresponding to fj in the summation should be deleted, as no substitution of Eqs. (21)

and (22) into Eq. (24) is required on this face. The nonorthogonal term in Eq. (29) is treated in the same way as that in

the momentum equation, as discussed at the end of the last section.

Once the solution of Eq. (25) is found, Eqs. (21) and (22) are used to obtain the new velocity, or

ui ¼ u�i �
1

ap

X3
j¼1

ðp0AnxÞfj ¼ u�i �
1

ap

X3
j¼1

ðAnxÞfj ½ð1� ljÞp
0
i þ ljp

0
ij �, (30)

vi ¼ v�i �
1

ap

X3
j¼1

ðp0AnyÞfj ¼ v�i �
1

ap

X3
j¼1

ðAnyÞfj ½ð1� ljÞp
0
i þ ljp

0
ij �, (31)

and the new pressure distribution can be obtained from Eq. (19).
4. Treatment for pressure on the boundary

The boundary condition on the body surface for pressure usually cannot be explicitly given. In fact this would not be

a problem in the solution procedure, if it were not required in Eq. (4). When face fj is on the body, the pressure on the

cell face cannot be obtained through Eq. (6), since there is no cell inside the body. To obtain pfj there, we apply a

gradient to Eq. (1). Because of the continuity equation, we have

q
qx

u
qu

qx
þ v

qu

qy

� �
þ

q
qy

u
qv

qx
þ v

qv

qy

� �
¼ �r2p. (32)

Integrating this equation over the cell, we obtain

X3
j¼1

qp

qn

� �
fj

Afj ¼ �
X3
j¼1

u
qu

qx
þ v

qu

qy

� �
nx

�
þ u

qv

qx
þ v

qv

qy

� �
ny

�
fj

Afj . (33)

The derivative of the pressure on the face attached to the body surface can then be obtained, as those on the other two

faces can be obtained from their corresponding control volumes. From the derivative and pi, pfj on the body surface can

be obtained from the Taylor expansion.
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For p0, we expect qp0=qx ¼ qp0=qy ¼ 0 on the body surface from Eqs. (21) and (22), as the velocity is known and no

correction is needed there. Thus the face value p0fj on the body surface is equal to p0i at the cell centre, which can then be

used in Eqs. (30) and (31).

5. Algorithm for an unrestrained cylinder

When the body is unrestrained, we consider the case in which only translation is allowed, while the same procedure

can be used when rotation is included. A coordinate system ðx; ZÞ fixed in the body is defined, which forms the following

relation with ðx; yÞ:

x ¼ xþ cxðtÞ; y ¼ Zþ cyðtÞ, (34)

where cxðtÞ and cyðtÞ are the displacements of the body in x and y directions, respectively. If we use the relative velocity,

ðu0; v0Þ ¼ ðu�Ub; v� VbÞ, (35)

where Ub ¼ dcx=dt and Vb ¼ dcy=dt are the velocities of the body, the momentum equation becomes

qu

qt
þ rðUuÞ ¼

1

Re
r2u�

qp

qx
�

dUb

dt
, (36)

qv

qt
þ rðUvÞ ¼

1

Re
r2v�

qp

qZ
�
dVb

dt
. (37)

Here the primes on ðu; vÞ have been dropped for convenience. If these two equations are compared with Eq. (1), it can be

seen that there are additional source terms due to the body accelerations Ax ¼ dUb=dt and Ay ¼ dVb=dt which will be

included in Sc in Eq. (10). It should be noted that the acceleration is not known, and it needs to be found through the

solution. We use an iteration scheme.

It is evident that the body acceleration has to be found through the forces ðFD;FLÞ. We have, through the standard

stress tensor txx, txy and tyy,

FD ¼

Z
SB

ðtxxnx þ txynyÞdA ¼

Z
S0

p�
2

Re

qu

qx

� �
dyþ

1

Re

qu

qy
þ

qv

qx

� �
dx

� �
, (38)

FL ¼

Z
S0

ðtxynx þ tyynyÞdA ¼

Z
S0

�pþ
2

Re

qv

qy

� �
dx�

1

Re

qu

qy
þ

qv

qx

� �
dy

� �
, (39)

in which a clockwise sense is assumed for integration. The acceleration can then be found from

Ax ¼
FD

Mb

; Ay ¼
FL

Mb

, (40)

where Mb is the nondimensionalized body mass. When there is a restoring force proportional to the displacement, this

equation should be written as

Ax ¼
FD � Kxcx

Mb

; Ay ¼
FL � Kycy

Mb

, (41)

where Kx and Ky are the stiffnesses in the x and y directions, respectively.

For the problem of interactions between a floating body and water waves based on potential flow, the fully nonlinear

coupling between the force and the body acceleration also exists. The potential flow is, however, governed by the

Laplace equation with no explicit reference to the acceleration. The acceleration therefore does not have a direct effect

on the solution as it does not appear explicitly in the boundary condition on the potential either. The acceleration is

required only when the pressure is needed through the Bernoulli equation. This is when the mutual dependence between

the force and the acceleration appears explicitly. Neither of them is known in advance and both are part of the solution.

For that problem, it is, however, possible to bypass the force and obtain the acceleration first by introducing some
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auxiliary functions (Wu and Eatock, 1996, 2003). It is, however, not straightforward to adopt a similar scheme here

(of surface integration only), as the acceleration is in the governing equation. But the method proposed in this paper

does not cause too much extra computational effort, as the iterative procedure for the acceleration is fully incorporated

in that for the momentum equations and pressure correction equations. Once the governing equations for the fluid flow

are solved, the acceleration is also found.

6. The solution procedure

The solution starts from the mesh generation which is based on a tri-tree procedure. The details are given in Hu et al.

(2002). The method defines an initial equilateral triangle, within which the desired fluid domain will lie and it defines a

set of seeding points about which the mesh will be generated. Consider each triangle in turn. If the triangle contains a

seeding point, the triangle is divided. This procedure is repeated until the maximum division level is reached. All

triangles are divided to a minimum level, and face regulation is applied to restrict the ratio of triangle sides sharing a

common edge to 2:1. Hanging nodes are eliminated through further subdivision, and boundary treatment around the

body is applied to move nodes of elements to the body surface. One of the advantages of this method is that all the

information for a cell, including its neighbours, parents and children can be stored by means of an integer numbering

system, which is particularly useful for the adaptive mesh.

Once the mesh is generated, the solution starts from an initial condition. As the vorticity develops with time, the grid

may be adapted according to the magnitude of the vorticity as defined by the following equation:

Oi ¼ Vi
qui

qy

���� �
qvi

qx

����. (42)

The values of Omax and Omin are specified. When Oi4Omax, the element Vi is subdivided and when OioOmin the element

is removed and the surrounding cells merge to become one. The index system of the mesh is then updated.

The solution procedure can be summarized as follows:
(a)
 generate the initial mesh based on the tri-tree method (Hu et al., 2002);
(b)
 initial velocity fields u
ð0Þ
i and v

ð0Þ
i at t ¼ 0 are defined, which can be obtained from the potential flow for impulsively

started motion (Batchelor, 1967, p. 471);
(c)
 the starting values for iteration at tþ Dt are taken from the solution at the previous time step;
(d)
 Eq. (10) is used to update ui and vi; the values of ui and vi required in ap and afj are obtained from those at the

previous iteration for the implicit scheme and from the previous time step for the semi-implicit scheme; when

PepPe0, the central differencing method in Eq. (6) is used and when Pe4Pe0, the upwind technique in Eq. (16)

developed in this paper is used;
(e)
 Eq. (25) is used to obtainp0, Eq.(19) is used to update the pressure, while Eqs. (30) and (31) are used to update the

velocity; Eqs. (38) to (41) are used to obtain the body acceleration. If the new velocity value in the whole domain or

the body acceleration is not sufficiently close to that at previous iteration, or p0 is not sufficiently small, go back to (d);
(f)
 when the desired accuracy is achieved, go to (c) for calculation at next time step (apply mesh adaptation first if

required at this time step).
7. Results

We focus our analysis here on circular cylinders. As discussed previously, the diameter of the cylinder D, and the fluid

density r, have been used for nondimensionalization together with the velocity of the incoming stream or the amplitude

of the oscillatory flow, which is U0 in both cases. The computational configuration is shown in Fig. 4. The time step is

taken as Dt ¼ 6:9� 10�3, as further reduction does not give a visible difference in the result. The solution is considered

to have converged when the difference between the current result and that at the previous iteration in the momentum

equation falls below 1.0� 10�6 and the error in the continuity equation falls below 1.0� 10�3, orP3
j¼1mfj=Vio1:0� 10�3at every cell.

7.1. Fixed cylinders

A uniform incoming flow is from the left side of the domain. The cylinder is placed in the flow with Le ¼ 5D,

Lr ¼ 20D and Ls ¼ 10D (see Fig. 4). No-slip conditions are imposed on the cylinder surface. The Dirichlet boundary
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Fig. 4. Computational configuration.

Table 1

Grid convergence test for a cylinder at Re ¼ 200

Case Base grid Adaptive grid at t ¼ 100

Max. subdivision level Min. subdivision level No. of cells No. of nodes No. of cells No. of nodes

1 12 6 10655 5554 18015 9234

2 13 6 15138 7914 22680 11685

3 14 6 23985 12573 31833 16497

Table 2

Drag and lift coefficients and Strouhal number for a cylinder at Re ¼ 200

CD CL S

Max. Min. Max. Min.

Present result:

Case 1 1.439 1.362 0.627 �0.629 0.193

Case 2 1.384 1.322 0.586 �0.582 0.190

Case 3 1.385 1.324 0.563 �0.564 0.190

Wille (1960) (experimental) 1.3 (mean)

Roshko (1954) (experimental) 0.19

Williamson (1996) (experimental) 0.198

Franke et al. (1990) 1.31(mean) 0.194

Farrant et al. (2000) 1.37(mean) 0.196

Lecointe and Piquet (1984) 1.50 1.42 0.70 �0.70 0.23

Chen et al. (1999) 1.37 1.29 0.72 �0.72 0.20

Chan and Anastasiou (1999) 1.53 1.43 0.63 �0.63 0.18
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Fig. 5. The drag and lift coefficients on a cylinder with Re ¼ 200.
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condition is set for velocity at the inlet. The pressure at the outlet is prescribed, say p ¼ 0, as a reference. Its exact value

will not affect the flow and the force on the body. Elsewhere, the Neumann boundary condition is imposed.

The grid convergence tests are carried out for the case of Re ¼ 200, with base grids of maximum division level 12, 13 and

14, respectively, based on the procedure summarized in Section 6. The grid adaptation is applied with Omax ¼ 3:6� 10�3

and Omin ¼ 2:5� 10�4 and with a maximum level of 12 and minimum level of 6, which means no adaptation is applied

even if the condition outlined after Eq. (41) is violated, when the division level has increased to the maximum or reduced the

minimum. All these data are chosen through numerical tests based on the balance of the accuracy and the efficiency. Details

of the numbers of elements, base grid nodes and the adapted grid nodes at t ¼ 100 are listed in Table 1. Table 2 shows a

comparison between the present results including the coefficients for the drag CD ¼ Force=ð1
2
rU2

0DÞ ¼ 2FD and the lift

CL ¼ Force=ð1
2
rU2

0DÞ ¼ 2FL, and the Strouhal number S ¼ f v �D=U0 (f vis the vortex shedding frequency), and those

obtained by experiment and other numerical simulations. The table shows that the error in the drag coefficient from levels

13 and 14 is about 0.07% while that in the lift is about 0.40%. These values are quite accurate for many practical
Fig. 6. Adaptive grid near the cylinder at t ¼ 62.50 with Re ¼ 200.

Fig. 7. Streamlines at t ¼ 62.50 with Re ¼ 200.
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Fig. 8. The drag and lift coefficients on a cylinder with Re ¼ 500.
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applications. The results are also in good agreement with the published data, although those from some numerical

simulations are closer to the present result from the coarser mesh. The time history of the force is given in Fig. 5. The CPU

required for case 3 is around 38h, which corresponds to 9.68 s for each time step.

The adaptive grid near the cylinder at t ¼ 62:50 is shown in Fig. 6. The densest distribution of elements is around the

body, especially in a region behind the cylinder where the vorticities are strongest. Fig. 7 gives the streamlines with

regular spacing Dc ¼ 4:0� 10�1, where c is the stream function. The oscillatory nature of the flow behind the cylinder

is evident.

For the case of flow past a fixed cylinder at Re ¼ 500, the maximum division level of the base grid is 14 and rest of the

parameters are the same as those in the previous case. The force history is given in Fig. 8. The mean value of CD is lower
Fig. 9. Adaptive grid at t ¼ 62.50 with Re ¼ 500.

Fig. 10. Streamlines at t ¼ 62.50 with Re ¼ 500.
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Fig. 11. The drag and lift coefficients for two cylinders in tandem ðc ¼ G=D ¼ 4Þ with Re ¼ 200.
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Fig. 12. The drag and lift coefficients for two cylinders in tandem ðc ¼ 1Þwith Re ¼ 200.

Fig. 13. Adaptive grid near two cylinders in tandem ðc ¼ 4Þ at t ¼ 62.50 with Re ¼ 200.

Fig. 14. Adaptive grid near two cylinders in tandem ðc ¼ 1Þ at t ¼ 62.50 with Re ¼ 200.
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than that at Re ¼ 200 but both the drag and lift here oscillate with a higher frequency and a bigger amplitude. Figs. 9

and 10 show the adaptive grid and streamlines with regular spacing Dc ¼ 4:0� 10�1 at t ¼ 62.50. Comparing with the

corresponding figures at Re ¼ 200, the vorticities at Re ¼ 500 are much stronger, which is of course expected.

Flow past two identical cylinders at Re ¼ 200 is considered next. The interaction between two cylinders depends on

their relative position and the parameter c ¼ G=D, where G is the minimum distance between the two cylinders, or the

distance between the two centres minus the diameter. The drag and lift coefficients are shown in Fig. 11, which are

obtained using a grid of level 14. Comparing with Fig. 5, we can see that the forces on the downstream cylinder take

much longer to become periodic. The effect of the downstream cylinder on the upstream cylinder is, however, much
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Fig. 15. Streamlines for two cylinders in tandem ðc ¼ 4Þ at t ¼ 62.50 with Re ¼ 200.

Fig. 16. Streamlines for two cylinders in tandem ðc ¼ 1Þat t ¼ 62.50 with Re ¼ 200.
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Fig. 17. The drag and lift coefficients for two cylinders side by side c ¼ 4Þð Þ with Re ¼ 200.
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smaller. Fig. 12 gives the force history for the tandem case with c ¼ 1. The oscillatory behaviour has virtually

disappeared. The adaptive meshes used in these two cases at t ¼ 62:50 are given in Figs. 13 and 14, and the streamlines

are given in Figs. 15 and 16 with regular spacing Dc ¼ 4:0� 10�1. The figures show that the vorticity in these cases are

far weaker than in the single cylinder case.

Figs. 17 and 18 give the force history for two cylinders side by side with c ¼ 4 and 1; respectively. For the case with

larger gap, the results remain more or less periodic, as in the single cylinder case. For the case of smaller gap, the results

become more irregular. It is evident that interaction between the vortices behind two cylinders is much stronger in this

case. Figs. 19 and 20 give the adaptive meshes and Figs. 21 and 22 provide the streamlines with regular spacing
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Fig. 18. The drag and lift coefficients for two cylinders side by side ðc ¼ 1Þwith Re ¼ 200.

Fig. 19. Adaptive grid near two cylinders side by side ðc ¼ 4Þ at t ¼ 62.50 with Re ¼ 200.

Fig. 20. Adaptive grid near two cylinders side by side ðc ¼ 1Þ at t ¼ 62.50 with Re ¼ 200.
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Dc ¼ 4:0� 10�1 at t ¼ 62:50. The case with c ¼ 4 shows that the symmetry of the flow is held rather well, but it is

totally destroyed in the case of c ¼ 1.
7.2. Cylinder in forced oscillation

The cylinder is placed at the centre of the computational domain with Le ¼ 12:5D and Lr ¼ 12:5D. The body

undergoes forced oscillation with U0ðtÞ ¼ U0 cos ot in an otherwise quiescent fluid. The simulation is conducted in the
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Fig. 24. The drag coefficient on the oscillatory cylinder with Re ¼ 200 and KC ¼ 10.
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Fig. 23. The drag coefficient on the oscillatory cylinder with Re ¼ 200 and KC ¼ 5.

Fig. 22. Streamlines for two cylinders side by side ðc ¼ 1Þ at t ¼ 62.50 with Re ¼ 200.

Fig. 21. Streamlines for two cylinders side by side ðc ¼ 4Þat t ¼ 62.50 with Re ¼ 200.
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system fixed on the body. This is similar to the procedure in Section 5 but with known acceleration. The Reynolds

number is now defined as Re ¼ U0D=n based on the amplitude of the oscillation velocity and the Keulegan–Carpenter

number is linked to the frequency through o ¼ 2p=KC. Fig. 23 gives the drag coefficient on the oscillatory cylinder for

the case of Re ¼ 100 and KC ¼ 5 or b ¼ Re=KC ¼ 20. Figs. 24 and 25 show the drag and lift coefficients on the

oscillatory cylinder for the case of Re ¼ 200 and KC ¼ 10 or b ¼ 20. These results have been compared with those

obtained by Dütsch et al. (1998). From their figure, the amplitude of the in-line force is found to be around 1.68MN/m

for the case with Re ¼ 100 and KC ¼ 5. This corresponds to CDðamplitudeÞ ¼ 3:33 after nondimensionalization, which

is in very good agreement with the result in Fig. 23.
7.3. Unrestrained cylinder in a steady approach flow

The computational domain used in this case is the same as that in Section 7.1 and the base mesh used is of a

maximum level of 13. The simulation is carried out using the procedure outlined in Section 5. Figs. 26 and 27 show the
2

1

0C
L

-1

-2
20 60 8040

t
100

Fig. 25. The lift coefficient on the oscillatory cylinder with Re ¼ 200 and KC ¼ 10.
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Fig. 26. The drag coefficient on unrestrained cylinders with different mass in steady flow with Re ¼ 200.
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Fig. 27. The lift coefficient on unrestrained cylinders with different mass in steady flow with Re ¼ 200.



ARTICLE IN PRESS

cy
lin

de
r’

s 
di

sp
la

ce
m

en
ts

0 20 40 60 80 100
-25

-20

-15

-10

-5

0

m=4

m=6
m=8

t

m=4
m=6

m=8

for x direction
for y direction

Fig. 28. Displacement of unrestrained cylinder with different mass in steady flow with Re ¼ 200.

Fig. 29. Streamlines around an unrestrained cylinder (m ¼ 6) in steady flow with Re ¼ 200 at t ¼ 62.50.
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Fig. 30. The drag and lift coefficients on a cylinder with stiffness in steady flow with Re ¼ 200.
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drag and lift coefficient, respectively, on a totally unrestrained cylinder at Re ¼ 200. The quantity m in the figure is

defined as body mass=0:25rpD2. The result shows that the force on the cylinder tends to zero. This is of course fully

expected. In fact the problem is dynamically equivalent to an impulsively started cylinder in an otherwise stationary

fluid. Due to viscosity, its motion will eventually come to a halt. There will be no motion and no force at the end, as

shown in Fig. 28 where the displacement of the cylinder relative to the current becomes a constant and the relative

velocity becomes zero. In fact the result in Fig. 28 is also the distance that the cylinder can travel in the otherwise

stationary viscous fluid when it starts moving suddenly. The lift shown in Fig. 27 is quite small. The result may therefore

be prone to numerical noise. The figure is plotted using the result after 100 time steps. Otherwise the plot would be

highly oscillatory. It is also interesting to see that unlike the result in Section 7.1, the drag curve here has no obvious

oscillation. This is because, before significant vortices have been developed, the relative motion between the body and
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the current has disappeared and the force has already become zero. This can be confirmed if comparison is made

between the corresponding streamlines in Figs. 7 and 29.

When there is stiffness, it is not possible for the cylinder to drift away and oscillatory behaviour is expected. Fig. 30

shows the drag and lift, respectively, on a cylinder ðm ¼ 6Þ with stiffnesses Kx ¼ Ky ¼ 1, Kx ¼ Ky ¼ 2 and

Kx ¼ Ky ¼ 5, respectively, and in a steady current with Re ¼ 200. Fig. 31 shows the displacements of the cylinder. The

oscillation in the y direction is quite significant and it is far smaller in the x direction, although there is an evident drift

from the original position. As the stiffness increases, the displacement in the x direction decreases and the system is

more like a fixed cylinder. The behaviour in the y direction is more interesting. When Kx ¼ Ky ¼ 5, the lift is much

smaller than in the other cases, but the displacement is much bigger. This can be explained by using the sinusoidal

approximation for the force. Assuming CL ¼ CL0 sinðotþ eÞ and cy ¼ cy0 sinðotþ eÞ, Eq. (41) gives

cy0 ¼
2CL0

ky � o2mpD2=4
.

Using the results in Fig. 30, we obtain that o ¼ 1:160; 1:175 and 0:990 corresponding to Kx ¼ Ky ¼ 1, Kx ¼ Ky ¼ 2

and Kx ¼ Ky ¼ 5, respectively. This leads to ky � o2Mb ¼ �5:340;�4:506 and 0:385, and cy0 ¼ �0:038; �0:039 and

0:144. Thus the bigger displacement at Kx ¼ Ky ¼ 5 is due to the system being closer to resonance. In fact, Fig. 31

shows that the amplitude of the oscillation in this case still increases even at t � 100. Fig. 32 shows the streamlines with

regular spacing Dc ¼ 4:0� 10�1 for the case of Kx ¼ Ky ¼ 2:0 and at t ¼ 62.50. The strong vorticity in the wake can be

seen, which is similar to the fixed cylinder rather than the fully unrestrained cylinder.
7.4. Unrestrained cylinder in an oscillatory flow

The cylinder in this case is placed in the middle of the computational domain, as shown in Section 7.2. Once again the

Dirichlet boundary condition is set for the velocity at the inlet and the pressure at the outlet, while the Neumann
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Fig. 31. Displacements of restrained cylinder (m ¼ 6) in steady flow with Re ¼ 200.

Fig. 32. Streamlines around a restrained cylinder with Kx ¼ Ky ¼ 2 (m ¼ 6) in steady flow with Re ¼ 200 at t ¼ 62.50.
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condition is imposed for the velocity at the outlet and the pressure at the inlet. The current is assumed as

U0ðtÞ ¼ U0 cos ot. The simulation is carried out based on the procedure discussed in Section 5, as the body acceleration

is unknown. Fig. 33 shows the drag coefficient on the cylinder ðm ¼ 6Þ with Re ¼ 100 at KC ¼ 5 and Re ¼ 200 at

KC ¼ 10; respectively. Unlike the result in Section 7.1, the drag here becomes periodic almost immediately. This is

because the acceleration of the current plays a major role in Fig. 33, while the oscillatory behaviour in the steady

incoming flow is due to the vorticity which takes time to develop.
8. Conclusions

A 2-D finite volume method together with a tri-tree grid has been applied to the problem of flow interactions with

fixed and unrestrained cylinders. Several new numerical schemes have been developed including an upwind technique to

calculate the face value using the information from the attached cells, a method to calculate the nonorthogonal terms

and the treatment for the pressure on the cell face attached to the body. These schemes have significantly improved the

quality of the numerical simulation. The time-stepping solution is found to be highly stable and the obtained results are

in good agreement with those published previously from both experimental study and numerical simulation. The

iterative scheme used in the paper to calculate the unknown body acceleration is also quite efficient for the cases

considered, as it does not take significant amount of extra CPU. All these have laid a solid foundation for the method to

be applied to more complex 2-D flow and for the method to be extended to 3-D cases.
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